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LlQU ID BEHAVIOR IN THE RESERVOIR OF THE 
SOUND SUPPRESSOR SYSTEM 

SUMMARY 

A large water reservoir of rectangular plan form is part  of a sound 
suppression system projected for use in the static firings of the booster stage 
of the Saturn V launch vehicle. Upon ignition of the rocket engines, a surge 
wave is created in the water mass  at the discharge side of this reservoir.  The 
surge wave will travel across  the water surface and be reflected on the opposite 
wall, and thus travel back and forth until it is eventually damped out by wall 
and internal friction. 

The characteristics of the surge wave are investigated by treating 
first the response of the liquid to harmonic excitation of one' side wall of the 
reservoir;  "admittance" is thus determined, with which the response of the 
liquid to any arbitrary motion of the container wall can be obtained. Motion is 
investigated for  a rectangular and a sinusoidal velocity respectively of one 
container wall. The liquid is considered incompressible, nonviscous, and 
irrotational. 

The velocity potential, free liquid surface displacement, velocity and 
pressure distribution, fluid force and moment have been obtained for various 
pulse durations; these results serve as design values for  the reservoir struc­
ture. The wave form was computed electronically for  a time coordinate with 
one-sixteenth second increments. These increments yield the wave motion in 
t rue time by assembling them in a film which shows quite lucidly the behavior 
of the liquid surface. 

SECTION 1. INTRODUCTION 

A reservoir of five-million gallon capacity is part  of the projected 
sound suppression system of the Saturn V Static Test  Facility. By injecting 
large quantities of water into the exhaust jets near the engine nozzle exit, the 
sound power generated by the exhaust jets will be reduced considerably (Fig. I). 
The high velocity of the exhaust creates a suction.which causes the water to 
flow, but also creates a surge wave in the container when the rocket engines 
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are ignited. The water system reacts as if one wall were suddenly moved. 
However, the water level is kept constant during the operation; the surge wave 
is of two-dimensional form. For  this reason the motion of the liquid in the 
rectangular container can be treated as that in a rectangular container of in­
finite width. 

. The container is considered to be of length 5 and filled with incom­
pressible liquid to a height h. To describe the real physical effect of the suc­
tion created by the firing of the rocket engines, one wall of the container is 
assumed suddenly to move for a finite duration. The displacement yo of the 
wall caused by this motion is considered small compared to the length of the 
container; the level of the undisturbed liquid thus remains in the average at its 
location x = 0 (Fig.  2) .. 

The problem posed is to determine the characteristics of the surge 
wave. To resolve this problem, the characteristics of the liquid motion are 
investigated by treating first the response of the liquid to harmonic excitation 
of one side wall of the basin. By determining the "admittance, the response 
of the fluid to an arbitrary motion of the container wall can be obtained. This 
is performed for  a rectangular and a sinusoidal velocity respectively of one 
container side wall. The velocity potential of the liquid is determined both . 

for  the time interval of the pulse and for the time after completion of the pulse. 
The free fluid surface displacement, velocity and pressure distribution, fluid 
force and moment can then be determined and serve as design values for the 
reservoir structure. 

The motion of an ideal incompressible liquid in a rectangular container 
of infinite length filled to a height h is then considered. A Cartesian coordinate 
system Oxyz is introduced such that the yz plane is located in the quiescent sur ­
face of the liquid perpendicular to the gravity vector. The xTaxis is pointing 
vertically upward. The height of the free liquid surface above the plane x = 0 
is called X = F (y,t) ; and is caused by some disturbance of the container o r  
one of its parts,  such as a side wall. 

The velocity of the ideal, incompressible liquid in the container can be 
represented as a gradient of a velocity potential 4 ,  which, due to the continuity 
equation has to satisfy the Laplace equation. The normal velocity of the liquid 
at the container walls is equal to that of the container wall. The free fluid sur­
face boundary condition is described by the kinematic and dynamic condition, 
of which the first expresses that the normal velocity of the fluid particles at 
the f ree  surface is equal to the normal velocity of the free fluid surface. The 
latter condition is obtained from the unsteady Bernoulli equation for  the pres­

2 




su re  p equal to the ambient gas pressure po. It is the first integral of the 
Euler equation. 

The problem is then to find those solutions from the class of harmonic 
functions satisfying the container wall boundary conditions which also satisfy 
the kinematic and dynamic condition. By proper transformation, the wall 
boundary conditions can be made homogeneous, and the problem is then to 
solve the Poisson equation with these boundary conditions. 

The problem of f ree  fluid oscillations in a rectangular container has 
been treated by Rayleigh [ I], in 1876.. In recent years,  the problem of forced 
fluid oscillations has grown in importance [ 2, 3, 41. Lorell [ 51 gave the 
linearized flow of a liquid in a rectangular container of infinite length for  trans­
latory harmonic excitation of the complete container. The purpose of the 
present investigation is to determine the liquid response (such as free fluid 
surface amplitude, pressure and velocity distribution, fluid force and moment) 
caused by pulse excitation of one container side wall. 

SECTION 1 1 .  RESPONSE OF L IQUID IN A RECTANGULAR 
CONTAINER OF tNFIN ITE W IDTH DUE TO HARMON I C  

EXCITATION OF ONE SIDE VVALL 

Before proceeding to. arbitrary wall excitation the solution for harmonic 
excitation must be known. Treating the liquid as incompressible, irrotational 
and inviscid results in a presentation of the velocity as a gradient of a velocity 
potential $I that satisfies the Laplace equation 

This equation has to be solved together with the boundary conditions of the pro­
blem. A t  the tank walls the normal velocity of the liquid and the container a r e  
equal to each other; after linearization it is obtained 

% =  0 at the side wall y = 0 ( 2 . 2 )ay 

at the side wall y = a ( 2 . 3 )  

@ =  0 at the container bottom x = -h . ( 2 . 4 )ax 

3 
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The free fluid surface condition is obtained from the linearized kine­
matic condition a#/ ax = &/ at and f rom the dynamic condition �or p = 0 ob­
tained by eliminating the free fluid surface displacement ?I from the linearized 
instationary Bernoulli equation a#/ at + gZ + p/p = 0. Thus, 

&& + g  %=, at the free fluid surface x = 0. (2.5)a t 2  ax 

Here, g is the gravity constant. The displacement y is considered small in  
0 

order to maintain the undisturbed free fluid surface in the average at x = 0 
(i .e. ,  a . h  = (a f y - h” which yields hXcM h( I T  yo ) ; therefore, it should-0 
 a 
be yo/ a << I). 

The transformation 

makes the boundary conditions (2 .2)  and (2.3) homogeneous. Instead of the 
Laplace emation (2. I) , one has to solve the Poisson equation 

Yo 
p*= a (2.7) 

with the transformed boundary conditions 

a t y = O , ’ a  (2.8) 

at x = -h (2.9) 

g 2 - = i1;13y02a2 a t x = O  (2 .  IO) 

A solution satisfying the boundary conditions (2.  8 )  is given by 

00 


*(y,x) = An (x)cos (Fy) . (2.11) 
n30 

4 




Introducing this expression into Poisson's Equation ( 2 . 7 )  yields 

n2nA "(x) -7A (x)= O  f o r n = O  ( 2 . 1 2 )
n ,  n 

and 

YOA "(x) = - i i2  - . ( 2 . 1 3 )
0 a 

This infinite set of ordinary differential equations in  x has  to be solved 
with the boundary conditions ( 2 .  9) and ( 2 .  IO) which with ( 2 . 1 1 )  yield 

An'(-h) = O  f o r n = O ,  1, 2 ,  ...... ( 2 . 1 4 )  

and n iQ3ay
0gAn'(0) - Q2An(0)= 2 (  -1) n2r f o r n = l ,  2 ,  . . . . . .  ( 2 . 1 5 )  

ia 3y0a 
gAo'(0) - i2'A 

0
(0)= ( 2 . 1 6 )  

Here ,  the right-hand side of equation ( 2 .  IO) has been expanded into 
a Cosine-Fourier-series and t e rms  of the left-hand side of equation ( 2 .  IO) have 
been set equal to those of the right-hand side. These become 

2 Q ! m 
JL= 0 ( 2 . 1 7 )

i Q 3 Y o  2a 2 n=i 

where 

ii2 3ay0 2a( -1) niQ3y0 
a =  
0 3 

and a! 
n 

= 2 n2 ( 2 . 1 8 )  

The solution of equation ( 2 . 1 2 )  with the boundary conditions ( 2 . 1 4 )  
and ( 2 . 1 5 )  together with qn = Q / w  as the ratio of the exciting frequency to 

the natural frequency of the liquid and w 2, QE (n n - ) (see Table I . )n a 
is 

An(x) = 2( 
ii2ay

0-
q2 

n 
cosh [F (x  + h)] 

( 2 . 1 9 )  
n 2 n 2 ( i  - 17112) cosh 

5 



while that of equation ( 2 . 1 3 )  with the boundary conditions (2 .14)  and ( 2 . 1 6 )  
is 

iyo h is2 ayo
YOA 

0
(x) = - is2 - (x2  + 2xh) - -

R g a  - 6 . (2.20)
2 a  

i R  t
The velocity potential rp (y,  x, t) caused by the harmonic excitation y e of 

0 

one tank wall ( y = a )  i s ,  therefore, with ( 2.6) given by 

F 

1 
rp(y,x, t )  = y0eiRtiQ { 2a 

- a -
a G 2  - - (x2  + 2hx)

G 2 a  
\ 2

00
2a n ‘n cosh [ y ( x  + h)]
+2 ( - 1 )  2 h7r n=l - ‘n ) n2 cosh(nn -)a 


The free surface displacement, pressure distribution and velocity 
distribution, as well as fluid force and moment can be determined from the 
potential by differentiations and integrations with respect to the time and spatial 
coordinates. 

The surface displacement of the liquid which is measured from the 
undisturbed position of the fluid is (Figs.  3, 4, 5 and 6) 

( 2 . 2 2 )  

Fo r  very small S2 << 1 and very Large fi >> 1, the liquid surface regresses Like 

h - - yoein . The pressure distribution at a depth (-x) is given bya 

p = - p a t% -pgx = - pgx + py0a 
a g h - -1 (x2 + 2hx) 

200 

2a n q n  cosh [F ( x  + 11) 1 cos(: 
n.rr h+ -pn=l(-1) (1 -vn2)  ‘ n2 cosh (7) y)] . (2.23) 

6 
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The pressure distribution at the wall y = a is, therefore, 

P 
y=a = - pgx + py0a a - gh_ - I (x2 +2hx)  

3 a2a 2 a  
2 L 

+303 

( i - q n )  
cosh [p ( X  + h)] ]77, 

2 
n=i n2 cosh (e) 

and at the wall y = 0, it is (Figs.  7, 8 and 9) 
r 

= - p g x  + p y  a2e -i (x2 + 2hx)
p y=o 0 0  

At the container bottom ( x  = -h) the pressure distribution is 

$ - 5 - &+e 
'bottom = Pgh + PYofi 2a 6 fi2a 2a 

n L  
03 (-1) qn2 cos 113L 

.~ ( a  Y >  
n7r h ]n=i (1  - a  ,") n2 cosh (y)' 

(2.24) 

(2.25) 

(2.26) 

The fluid force is obtained from integration of the pressure along the sidewalls 

(2.27) 

which with the fluid mass m = p ah yields the expression (Fig.  10) 

The moment of the liquid about the center of gravity of the undisturbed 
fluid is given by 

7 

I 




and yields the expression 

The velocity distribution is given by 

At the left container wall ( y  = 0)  the velocity v is zero and at the right con­

tainer wall ( y  = a) it is y ii2 eii2 , which agree with the given boundary con­
0 

ditions. The vertical velocity distribution is 

m 2 
x+h (x+h)]% cos (““a” ’] . u = = y i f ie  -- + -

2 c (-1) n sinh [%? 
nn hax 0 a n n=i n c o s h ( F ) ( l  - q:) 

(2.31) 

At the container bottom (x = -h) the velocity is u = 0, which agrees with the 
boundary condition. 

SECTION I11. RESPONSE OF L IQUID DUE TO 
ARBITRARY EXCITATION 

To determine the response of a liquid with a free fluid surface in a 
rectangular container of infinite length with one moving side wall caused by 
an arbitrary nonperiodic excitation $(t) , the function $ is written into its 
simple harmonic components by means of the Fourier integral 

8 
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w w  

+(t)  = ;I 	 11 G ( T )  cos Q ( t - 7 )  dTdQ . 
0 --oo 

The solution to the steady state problem yields the "admittance" of the fluid 
system, which is combined with the components of the response of the liquid 
to obtain the response of the system to the original nonperiodic excitation 
functions. Then 

is the velocity potential of the liquid due to the nonperiodic excitation k(t) . 
Therefore, by rewriting the potential (2.21) as 

r 

the "admittance" + is given by 

i+ (y ,x ; s1 )  = 2a 
' - a-

6 2a 
(x' +2hx) -& 

Q 2a 

W 

2a a' cosh [F( x  + h)] cos (?Y)-. 

7r n7r h+Ti
n=i - n2) n2 cosh (7) 

and the velocity potential for an arbitrary nonperiodic excitation y( t) yields 

w + w  
y2 - %  - -I (x2 + 2hx) -& 

6 2a 'a 
L 

00 
Q 2  cosh (x+h)J 

n=l ("" - "'))' n2 cosh (7)n7r h 
J 

9 
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A .  	 RESPONSE OF LIQUID DUE TO SINGLE RECTANGULAR PULSE 

A single rectangular pulse of magnitude v and duration t start­
0 0 

ing at t = o (Fig. 11) can be described by the Fourier-Integral 

With 

V for  0 < t < t o  
0 

v (t) = 

0 for  t > t  
0 

the expression obtained is 

v mv * cos a t  sinQtt, d Q +  L! * s in  Q t( I  - cosQto) ~Q .v ( t )  = f J - , 7r Q
0 0 

The velocity potential for  rectangular pulse excitation is, therefore, 

V " a i cos Q t  s in  ,to 
dQ 

0 

v * h sin, t 
0 

COS Q t
0 

- -7r 	 Jg, Q 3  
dQ 

0 

v * 1 cosQt01+ L!0s [L2 
- 6a - 2a ($+2hx)] 

s in f i t  c -
dC27r 2a i-2 

- " J
00 @ s in f i t  [1 - cosQt

0 I 
7r a an3 dQ 

0 

2avo 
+ 7 ( -1)  

n cash[% ( x + h ) ]  COS (gy)s * sin a t  [I - cos .Q to],, 
n7r hn2 cosh [y] 0 

(w,"- Q2)  

10 



The occurring integrals can be solved with complex integration 
methods 	(see Appendix) . 

The solutions are: 

W 

s 
0 

cos 52t sin Q t  
d52

0 

52 

77-
2 

0 

for 

for 

0 
t < t  

t > to 

W sin 52t cos 52 t 0 for 
0 

t < t  

s 
0 

Q 
d520 

W

J 
0 

00 

s 
0 

sin Q t  * 
dQ

52 

sin at[ I - cos a t  
Q 3  

O ]  a52 

7r-
2 

for 

fo r  

fo r  

7r- t (2to-t) 

R t  2 

4i 4 0  

0 
t > t  

t < o  
t > o  I 

for t 2 to 

fo r  t 5 t 

00 

s 
s in  Q t  cos Q t  

d52
0 

523 
0 

for t > t o  

w 

s 
Q cos Q t s i n 5 2 t

0 
. d52

w 2  - n 2  
0 n 

t s i n w  t for t > t  n n o  0 

il 



s ’  Q s i n Q t  cos a t  for  t < t  
0 


dQw 2 - Q 2
0 n I-;cos w 

n 
t cos w t for t > t  

0n o  

[-cos w nt for  

L o  for t < o  

With these results, the velocity potential for excitation caused by a 
single rectangular pulse of the container wall y = a is given by: 

a 

03 
a cosh [% (x  + h)] cos (%?y) 
7r n=i n2 cosh (a)- - 2  n7r h 

where the upper line corresponds to values t < t and *e 
0 

time t > t . 
0 


The free fluid surface displacement is 

2t2 - 2tt + to 
0 

2tt - t 
0 0 

(3.2) 

( t  -t) + cosw n o  

cosw t - cos0 (t-tn n o 

lower line, to the 

where F(t) = sin w t 2 sin w ( t  - t ) ; the upper sign belongs to the time n n 0 

interval t < t
0 

while the lower sign belongs to t > t
0
. 

The pressure in the container at a depth ( -x) is given by 

12 




P = -PgX-PV0 [q
t 
0-t-:l2 

00 
c (-i) n w n  cosh 1%(x+h&os (F y) 
+ ;z n=i 

n2 cosh (7) 
(3.4) 

nnh 

At the tank wall y = -0 the pressure distribution yields 

03 rlp
up cash[ a ( x + h ) ]  F(t) 

n=i n2 cosh (a)1 ( 3 . 5 )  
n7r h 

and at the container wall x = a the pressure distribution is 

At the container bottom x = -h the pressure distribution yields 
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'bottom 

2­

03 
a c (-1) n wncos ( ~ y )  

(3 .7 )+ - 2  n7r h 
7r n=i n2 cosh (T) 

By integration of the appropriate pressure components, the liquid 
force and moment can be obtained. The force in y-direction becomes 

CO 
F = -mv [$2 w 2n-i 

Y 0 n=i (211-1)~ 7r h/ a 

The fluid moment about an axis parallel to the z-axis through the 
center of gravity of the undisturbed liquid is 

mav 0 03 w 211-1 
n=i (2n - q 3  [,, [(2n2)7r h ]M z = 7 C  

'1 

2 

2+ 
(2n-i)7r h /  a Ecosh [ (Bn- i )~h/ 4 - ijJ P ( t ) .  (3.9) 

The velocity distribution in y-direction is given by 

a +u =  - =  V
a Y  0 

L~~ 

co 


+ -
i 
C (-1) 

n cosh [*(x+h)lsin ("iay ) {cosw n ( to-t) 4-cosw t 

n7r h7r n=i 
n cosh (a) cosw n t - cosw n(t-t o) 

J 

and in x-direction it is 
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r 


I W n sinh [% ( x  + h)] cos (?){cosw n( t0-t) + 
(-1) nr  h 

71 n=l n cosh (7) cosw t - cosw (t-t )n n o 

B. RESPONSE OF LIQUID DUE TO A DOUBLE RECTANGULAR PULSE 

In considering a rectangular double pulse, i. e. , a pulse of con­
stant magnitude v for a duration of t seconds with a constant magnitude -vi 

0 0 
for a duration of t, seconds (Fig. 11) 

for O < t < t  

v( t )  = 

This pulse can be described by the Fourier-Integral 

v ( t )  = 
("0 

71 

+ "1) 

J 
m cos a t  

8 

sin 8 t  
0 

d 8  + (vo + "1) s~0 sin a t(I-cos a t  
0).. 71 d 852 

0 0 

m cos 8 t sin 8 ( t  + ti) wsin a t  [I-cos 8 ( t  + ti)] 
71 


-L 
0 

j 
8 

0 

d52- :j
0 

8 
0 d 8  . 

The velocity potential for this pulse is then: 
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v + v i  i 
cos a t  s in  ato 

(y,x, t )  = (7 2a 2a)r[L a
6 - -(x2 +2hx)1 a dW 

0 

to 
i cos t s in  ( t

0
+ tl) 

-
7r . 2 a  2aEl- s [L - 6 - -(g +2hx)] a dfi 
0 

cos a t  sin a (to+ ti) da 

+ XL g (2) d a37r 

to s i n a t  [i-cos Q t + t l  

a 3  ( 0  )I di-2 
7r 

m Q  cos a t  sin a t2a 00 n cosh [% (x + h)] cos (% y ) ~  0 
dS+ 3bo+ n7r h 

0 
(w," - Q2)7r 	 VI) 

n=i
(-i) 

n2 cosh -
a 

VI) 

to 

(-1) 
a ( x  + h)] cos (Yy) J 

to a sin a t  [i-cos t 
0I

dS22a n cosh c.. 
+ 3bo+ n7r

7r 	 n=i n2 cosh - h 0 
(w," - !a2) 

a 

to 

an cosh [=(x  + h)] cos (Yy)J 

w Q cos a t  s in  (t
0
+ ti) 

dS2 
n=i n2 cosh Ilp_h 0 

(w n2 - a2)a 

00 
n cosh [% ( x  + h) 1cos (%.y)j 

co Q sin a t  [i-cos a (to+tiu 

- % V I  
n=i 

(-i) n2 cosh -h7r n7r 
0 (wn - s22) 

a 



In addition to the previous integrals others occur which can be solved 
by the same complex method indicated in the appendix. These are: 

co cos a t  sin SZ (t  + t l )  n / 2  for  t < t  + h
0 0 

0
s a d a  

for  t > to + h  

03 s in  a t  c1-cos ( t
0 

+ t
1’3dS2 

n / 2  for t < t 
0 

+ t i  s a
0 


for t > t o+ t i  

00 sin sz t [I-cos a ( t  + ti)] (n/  4) t (2 to + 2tl - t) f o r t  < t 
0 

R 3  
0 
s 

(7r/ 4) (t
0
+ ti)2 for t > t 

0 
+ ti 

s co L? cos a t  s in  ( t  +ti)  ( - n /  2)cosw tcosw ( t  +ti) f o r t  < t 
0 n n o  

0 
w n 2 - 5 2 2  (n/ 2) sinw t sinw n( to+ti) for t > to+ h 

n 

00 
sin a (t  + ti) cos R t  for t < t + tl 

0s di7 
0 a3 

<-n/ 2) t ( t
0
+ti)  for t > t 

0 
+ ti 

03 

s a sin a t  [I-cos a(t
0 
+ ti,j 

d a  = 
0 w 2 - s - 2 2  n 

2) 
C
cosw 

n 
t + sinw 

n 
t sinw 

n 
(to+tl)] for t < to+ t, 

(*/ 2) ccosw n t - cosw n t cosw ,n( to + t1’1 for t > t 
0 

+ t i  

With these results the velocity potential finally is found to be 
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[$ -
- z;tI(x2+ 2hx)1 

f
12 (2tt0 -2t2 - t02) 

1I 
t / 4 (to - 2t) 

O \t:, 4 (to - 2t) 

3 [(to + ti) - 2tit - t 
0 3 

+ V I  ;[t; - 4 tt + 2t2 - 2ttl + 
0 

[3 [tt,” + 2ttl - (to + 

fcos w t I- cos n

- 3 zav  03 

(-1) cosh Ema ( x  + h) 

n=l n2 cosh (7) nnr h 

cos w t - cos n 

ca 
( -1) cosh ( x  + h)] cos ( y y )-

7rz n =I n2 c o s h ( 7 )n7r h 

Icos w (t  - t ) - cos w ,[t - (to+t1)]n 0 

-cos w ( t  - to) - c o s  w E - ( to  + $2 n n 

cos w n [t - (to+ti)] - cos w n ( t  - to’ I
In this equation the first line corresponds to the time interval 0 < t < t the 

0, 

second, to the time interval t < t < t + tl and the third line corresponds to 
0 0 

t >to+ti. 

In the symmetric case when the container wall at y = a is moved the 
same amount and with the same velocity to the left and right, the time inter­
vals are consecutively 0 < t < t 

0 )  
t 
0 

< t < 2toy and t > 2to. For this case 

v = vi, ti = t and the velocity potential is 
0 0 
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2a 

(3 .10)  

03

- 7 z( -1) cosh[y  ( x  + h)] cos (9avo y) 

n=i n2.cash (7)nn h 

cos w t + 2 cos 0n(t  - to) - cos w n(t - 2 to)
n 

cos w t - 2 cos w ( t  - - cos w n( t - 2 to)
n n 

cos t - 2 cos w n ( t  - t ) + cos - 2 to)n 0 

The free fluid surface displacement is 

v a co (-1) 
n+l w cos (9y)n-

n2~ 

F n(t) (3 .11)  
a gn n= 1 

where 
s i n wnt + 2 s i n wn ( t - t )  - s i n w  n ( t - 2 t o )0 

s i n w  nt - 2 s in  w n (t - - s i n w  n( t  - 2 to) 

s i n w  t - 2 s i n w  (t - + sin w n ( t  ­n n 

The upper line represents the time interval 0 < t < t0) the middle line, the 
interval t

0 
< t < 2 t

0 
and the lower line is valid for t > 2to. Considering only 
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the first te rm of the surface displacement, it can be seen that the surface level 
will sink during the time interval 0 < t < t and then rise again to its original

0 
level in the second time interval t 

0 
< t < 2 t 

0 
. The pressure in the container 

at a depth (-x) is given by 

moa 00 ( -1) w n cosh[y  (x  + h)] cos (?y). 

n=i n7r h- 7 z  n2 cosh (7) Fn(t) .  (3.12) 

A t  the tank wall y = 0 the pressure distribution is 

f t  7 
PY=O = - , ,-Pg(i)  vo { 2 t o - t )  

(3 .13)  

and a t  the container wall x = a it yields 

f t  7 

Pv a m w n c o s h [ g ( x + h ) ]- 2 . 2  Fn(t)  (3.14)
7r2 n7r h

n=i n2 cosh (7) 

A t  the container bottom x = -h the pressure distribution is 
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n 
pvoa 00 (-1) w cos nc-7 

n2 cosh (y)Fn(t) . (3.15) 
n=l 

The fluid force in y-direction is 

and the moment of the liquid about an  axis parallel to the z-axis through the 
center of gravity of the quiescent fluid is 

r 
mav 

0 
- w 2n-I

M,= -E ­
r 3  n=j (2n-I) a 

L I 

(3.17) 

The velocity distribution in y-direction yields 

( cosh[p  (x  + h sin T Gn(t) 

nlr h \v =  a o n=l n cosh (7) 

which vanishes fo r  the left container wall y = 0; for  the right container wall 
y = a it exhibits the value vo during the time interval 0 < t < t

0 
and the value 

-v 
0 

during the time interval t
0 

< t < 2t0, and vanishes for  the time t > 2t0, 

as prescribed by the boundary conditions. 
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G (t)  represents the time function as given in the infinite series of n 
the potential (3. i0) . The velocity distribution in x-direction is 

00 nlr 
u =  - sinhc? (x + h)] cos (T y) 

a lr n=l 
-1) 

n cosh (y) Gn(t) 

The first te rm in these expressions indicates the motion of the liquid without 
sloshing since the geometry of the container changes, The liquid has to flow 
down during the t ime interval 0 < t < t and flow up again during the time in­

0 


terval t < t < 2t as the wall moves back to its original position.
0 0 

C. RESPONSE OF LIQUID DUE TO SINUSOIDAL PULSE 

A sinusoidal pulse consisting of one single sine-wave (Fig. 11) 
of the form v s in  (27r t/ t ) , with t seconds duration as given by

0 0 0 

v( t )  = lr t /  to) for  0 5 t 5 to, 

10 elsewhere J 

can be represented by the Fourier-Integral 

2~ W ~ O S Q ~- I J C O S G ~  
0

v ( t )  = t 
0 0  

J (a2- 4 7r 2/  t 
0

2) 
dG 

00 s in  G t s in  fit vo 0 

+ -t J ( G 2 - - 4 d / t 2 )  
dG . 

0 0  0 

The potential i s ,  therefore, 
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cos a t p - c o s  a t  
0+ -

t a  
0 0 0 

03 

+ - n coshh!(x + h) lcos  (F~)[[a2s in  a to sin a t  
n7r h 

n 2 to n=1 n2 cash( 7) 0 
(a2 - 47r 2 / t  

0
2)  (w 

n
2-aZ) 

a 2  cos R t p - c o s  a t  ] 
-	 (a2 - 47?/ t 2) (w 2- a2)I d a .  

0 n 

The occurring integrals a r e  
/ 

for  

> tofor  tt < t o  1 
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w 7 r  
nI- 2(w ;- t 

0 
) cos w n t s in  w t47r 2 /  n o  for t > t0I 

l o  for  

co 

s a2 cos a t p - c o s  a t  
0 
3 

dfl = 
0 ( 0  2-a2) ( a 2 - 4 7 r 2 / t  2)n 0 
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.With these results the velocity potential due to a sinusoidal pulse is 

2 vog t:h-

4av ­ n+o(-1) 
n 2to n=l 

where 

- n w  

8nI+ - - - \  & tt 0 

cosh[?8 (x+ h)] cos (Fy)-
Gn(t) (3.ia)nn h 

n2 cosh (7) 

n p i n  w 2 + sin w (t -tjJ+ 2n 2sin for t < t -
G (t)  = 2(w;- 4 n  2/t;) 

n o  to(w ;-47?/t 
0

2 )  

n n u  n [-sinw t + s i n w  ( t  - t ) ]  for t > to2(w;- 4 n  2 /  t;) n n 0 

The free fluid surface displacement is 

(3 .19)  
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- -  

The pressure in  the container at a depth (-x) is given by 

n - 0 
n ( t ) .  (3.20) 

n 

At the tank wall y = 0 the pressure distribution is: 

2pvoa 03 cosh [%?(x + h) 1 I 

nn h 47r2 Fn(t)n to n=i wnn2 c o s h ( 7 )  (.:- 7) (3.21) 

and at the container wall y = a the pressure distribution yields 

cos (2n t /  to)

}PYq= - P S  -72pvo7r [ E3 - 2a ( 2 + 2 h x ) ]  {o .  
0 


+ 
Pvoghto 

(27r t /  to) - ‘I} 
27r a 

2pvoa 03 
coshclllLa (x + h) 1 -

(3.22)-
7rt o c n7r h 

(w 2 - 4n ’/to2 ) 
Fn(t) ’ 

n=l n2 cosh (F) 
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n=l 
- -  

The pressure at the bottom (x  = -h) yields 

cos (27r t/ to) 
P

bottom 0 

+ 
27r a 

2pvoa 00 

.. 
7r to c n2 cash (7)n7r h (u 2- 47r 2/  t:) 

n 

The liquid force in y-direction is 

and the fluid mo 

cos (2n t / t  ) 

M 
z 

= ma2 	 i O \  

-(0 

4v 
0 


Finally, the velocity distribution in y-direction is 

q t )  (3.23) 

(3.24) 

J 
+ 

a 

t
0

2, 

(3.25) 
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-
n t  o n=i n cosh (:h) 

It vanishes for the left wall y = 0 and exhibits for  the right container wall y = a 

the expression v o a  s in  (27r t/ t0) , as given in the boundary conditions. 

In x-direction it is 

f i  J 
u =  -v 0 a t o ) s i n ( y )  

n7r h 
o n=i n cosh (7) 

which satisfies the boundary condition at the container bottom x = -h. 

SECTION IV. NUMERICAL EVALUATION AND CONCLUS IONS 

The behavior of the liquid caused by harmonic excitation of one con­
tainer wall does not present any new effects compared to those of the excitation 
of the total container. At the natural frequencies w the free fluid surface 

displacement, fluid force and moment, etc. , exhibit singularities. For this 
reason the number of graphs showing this type of excitation has been held to a 
minimum. However, it is interesting to note that in the case of harmonic ex­
citation of one side wall the nodal line of the free fluid surface no longer re­
mains at y = a/ 2, as in the case of excitation of the total container. For  an 
excitation frequency Q below first resonance, the nodal line is in the right half 
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of the free fluid surface, while above resonance it is in the left half of the free 
surface. Figure 12 exhibits the shape of the free fluid for  excitation frequencies 
i2 = 0 . 9 w l ,  l . l w 1 a n d 0 . 9 w 3 .  

The character of the height of the free liquid surface is well presented 
by the formulas for  double rectangular and sinusoidal pulses (Equations 3.11 and 
3.19). The first one probably best  describes the effect of the rocket firing. 
Both excitations, however, should yield a s imilar  liquid response in spite of the 
different analytical expressions. The disturbance of one container wall acts 
like a line source emitting waves of all wavelengths and frequencies. The 
numerical results are given for  a tank of length a = 250 feet and a liquid height 
h = 16 feet. The natural frequencies for  this container are given in Table Ifor  
n = i ,  2, .....30. 

A rectangular double pulse with a duration of one second is considered. 
During the first half-second of the pulse the container wall moves to the right 
and the liquid moves down the moving wall, while during the second half of the 
pulse duration the container wall moves to the left and the liquid moves up, 
forming a valley in front of the wall. Af te r  the pulse is completed, the liquid 
is still moving toward the left, separating from the wall and starting to build 
up wave packages. As the first wave of the package moves towards the left, it 
decreases its height and the energy thus released is used to form other waves. 
The first wave valley of larger wave leng-th initially created by the motion of 
the container wall moves faster away from the disturbance than the waves of 
smaller wave length in the wave package. The free fluid surface elevation of 
the liquid in the container is shown in Figures 13 through 24 at various times; 
the abscissa is (y/a) and the ordinate is T/ v . 

0 

It can be seen that after completion of the pulse the liquid reaches a 
height of X = 0 . 4 1 ~  while the valley exhibits a magnitude of X = -0 .042~ and 

0, 0 

is at a location y M 0.95a. One second afterward, the valley has moved to 
y = 0.87a and has decreased its magnitude to about x = -0. 038v0. At the same 

time, the peak amplitude of the wave which separated from the wall has moved 
only by 0.02a and has decreased its amplitude to a value of X = 0.212 v As 

0' 


time increases, other waves are generated on the right side of the container, 
while the amplitudes of the present waves decrease continuously. 

At three seconds, i. e. , two seconds after the disturbing pulse has 
been completed, the original valley has a depth of X = 0: 028 v and is located 

0 
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further to the left at y = 0.77a. A second wave has been formed very close to 
the first one. The positive displacement of the first wave is reduced again to 
a value of approximately F;= 0.125 v while its negative displacement is 

0’
-x = -0.18 v . As time elapses, the waves move with different speeds toward 
0 

the other container wall. The first valley needs about eleven seconds to t raverse  
the container. 

At time‘four seconds, the first valley has further decreased its mag­
nitude (to X = -0 .023~  ) and is located at y = 0.69a. The magnitude of the 

0 

first wave has decreased to x = 0 . 0 8 7 ~  and is located at y = 0.87a. A third 
0 

wave has been formed and the second wave has a negative displacement of -

x = -0.145a. As the first valley travels toward the left container wall its geo­

metric shape becomes flatter and its depth decreases. The first waves separate 
more and more from the wave package, decreasing their  amplitude, while others 
are still formed. 

At the t ime of six to seven seconds after completion of the pulse, the 
liquid on the left wall experiences a decrease in level. A few seconds later the 
first wave package seem to be completed. The first valley finally reaches the 
left wall at about eleven seconds with a magnitude of Z =-0.22 v is reflected 

0’ 


within two seconds and in the fifteenth second exhibits an amplitude of -
x = 0.055 v . The reflected wave is running toward the right into the first waves 

0 

of the wave package. 

At this time, about one-tenth of the container surface from the right 
hand wall is about at the equilibrium position Z = 0. The first of the reflected 
waves increases in magnitude, then decreases during the time the waves work 
at each other. During that same time period, one-tenth of the liquid level on 
the right hand side container wall sinks slowly to a value of X = -0.01 v at 

0 

twenty-one seconds; and forms a curved surface with more negative displace­
ment at the right container wall, while on the left container wall large liquid 
oscillations (X= - 0 . 0 6 ~  ) take place. With increasing time the liquid level on 

0 

the right container wall r ises  again to a level of about X = 0. 012v0, which 

stretches to about one-fifth of the fluid surface area from the right container 
wall into the liquid. 
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During the time period from twenty-five to twenty-seven seconds, 
the liquid surface rises at y = a but decreases at y = 0.8a exhibiting an ampli­
tude at y = a of about X = 0.036 v 

0, 
then swings back to the negative side to an 

amplitude of X = -0.04 v and so on. On the left hand wall of the container the 
0, 


amplitude increases to a value of about 0.12 v as time proceeds, while in the 
0 


center of the container a "confusedT1wave motion takes place. 

At forty-nine seconds the amplitude of the liquid at the right container 
wall ( y  = a) exhibits a value X = 0.068 v and shows a wave of la rger  wave 

0 


length in its vicinity. It should be noted, however, that for  a fairly large value 
of v = 10 feet per  second, the original wave height at separation from the 

0 


moving container wall would be 4. I feet, while the initial valley is only 0.42 
foot in depth. The maximum wave height at the left container wall would be 
about 0.7 foot. 

Although the liquid motion can still be described for  long periods 
after completion of the excitation pulse, in reality the motion may have damped 
out due to viscous forces of the fluid. Therefore, no further attempt is made 
to ascribe real  significance to the wave motion which takes place after the first 
wave has reached the opposite container wall. 

Before proceeding to the description of the liquid behavior at a fixed 
location in the container, the results of the sinusoidal pulse excitation will be 
investigated and discussed. It should again be mentioned that no energy dissi­
pation has been considered during the liquid motion, indicating that the energy 
introduced into the system by the wall motion remains indefinitely in the liquid. 
This, of course, is not in agreement with daily experience. 

The response of the free fluid surface to a sinusoidal pulse of the 
form v sin (2n t/ t ) of the container wall at y = a can also be presented at a 

0 0 


fixed time after the pulse. Most of the results will  be omitted here  and only a 
few graphs are presented. (Figs.  25-30) . 

The total pulse duration is again t = I second. During half of the 
0 


pulse duration the liquid will move down on the right container wall, while dur­
ing the second half of the pulse, when the right container wall moves toward the 
left again to its initial position, the fluid moves up the wail. At time one and 
one-fourth seconds, i. e. , one-fourth second after the pulse has been completed, 
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the valley exhibits a depth of X= -0.932 v (which for  vo = 1 0  feet per  second 
0 

is a valley of 0 .32  foot). The wave which moves away from the right hand wall 
has height of Z = 0.25 v (2.5 feet for  vo= 10 feet pe r  second. 

0 

A comparison of these results with those for the rectangular pulse 
shows that the valley and the first wave height exhibit about sixteen percent 
la rger  values in the rectangular pulse case. Essentially the same liquid be­
havior is observed in these results. The first wave of the wave package moves 
with decreasing height but increasing wave length toward the left wall of the 
container, while new waves are added to the wave package as time elapses. 
The first created valley and waves move faster toward the left container wall 
than those of the interior of the wave package. 

At about six seconds the liquid level on the left container wall starts 
to sink until the first valley which decreased its original magnitude of-x = -0.032 v to a value below -0.01 v increases it slightly again to about 

0 0,-x = -0.014 v at eleven seconds, at which t ime the reflection starts. Approx­
0 

imately one-tenth of the liquid level on the right container wall is in the 
equilibrium position at that time. A s  the amplitude of the reflected wave on the 
left container wall increases to positive values of magnitude X = 0.035 v the 

0, 

liquid on the right hand side performs no motion at all from y = 0.9a to y = a. 

As t ime progresses, the reflected waves work against the wave pack­
age while the flat liquid surface area on the right hand side of the container 
increases its area from y = a to y x 0.85a and sinks like a straight surface. 
In the center of the container a violent wave motion takes place. The wave height 
on the left container wall increases to X = f 0.04 v while the right-hand side 

0, 

surface curves to la rger  depths for y = a, swings first up at y = 0.8a and is 
then followed by an  increase of surface elevation at y = a to a magnitude of about 
S = 0.01 v at twenty-five seconds. In the time proceeding, the free fluid sur ­

0 

face elevation at y = 0.8a decreases to negative values, while it increases at the 
right container wall to a magnitude of about 0.024 v at twenty-seven seconds. 

0 

On the left container wall the amplitude is increasing with time and shows a 
value of X = 0.07 v at forty-two seconds. On the right container wall, a wave of 

0 

l a rger  wave length forms. 
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The sequence of these motions can be seen in a 16" movie, which 
.(r 

was produced from the computer results.' It should be mentioned again, that 
the liquid motion is subjected to internal as well as to wall friction; therefore, 
the motion will be damped out soon and probably will not continue for  the time 
length indicated in  the graphs o r  the film. It should also be mentioned that the 
scale in  the direction of the ordinate is greatly magnified. While the distance 
between the left and the right container wall is 250 feet, the height of the waves 
is only three to four feet. 

The flow rate of 4000 feet3 per  second during the firing of the rocket 
engines is simulated'by a velocity v of the right container wall of 

0 


v = 1.67/to.
0 


With this relation, the velocity amplitude v of the right container wall during
0 


a double rectangular pulse for  a half-pulse duration of to seconds has to be 

v = 6.7 f t /  sec. for  t = &second 
0 0 


v = 3 . 4  f t /  sec. for  t = $second 
0 0 


v = 1.67 f t /  sec. for  t = 1 second. 
0 0 


For a sinusoidal pulse, the value for v can be obtained from 
0 


16 f t x  150 f t .  x 
to/ 2 

v s in  (y)dt = 4000 ft3 
0 


0 


(the width of the container is 150 feet) 

-4.*I. 

The motion picture can be obtained on a loan basis from F. Kramer of 
MSFC, Test-Division. 
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which yields 

I.6% 5 . 2 5v = - = ­
0 	 t t ­

0 0 

With this result the velocity amplitude v of the container wall during a 
0 


sinusoidal pulse of duration t seconds is obtained as 
0 


v
0 

= 1 0 . 5  ft/sec for  t 
0 

= &second 

v
0 

= 5 . 2 5  f t /  s e c  for  t
0 

= i second 

v = 2 . 6 3  ft /  s ec  for  t = 2 seconds. 
0 0 

For  a rectangular .double pulse the original wave height at separation 
of the disturbing container wall would be X = 2.74 feet, while the maximum 
liquid height at the left container wall is about 0.48 foot for  double-pulse dura­
tion of one second. Fo r  a half-second duration, these values represent only 
the magnitude of 2 . 2  feet and 0 . 3 7  foot respectively. 

Similar results are obtained for  a sinusoidal pulse; only those for the 
one-second duration are presented here.  The liquid height at the right container 
wall is I.3 feet at the time of pulse completion, while the maximum wave height 
at the left container wall is about 0 . 3 7  foot. It may be mentioned that the 
sinusoidal excitation mode with one-second duration ( t  = Isecond) was used 

0 


for  the film. Figure 31 shows the surface elevation at the left wall, as a func­
tion of time. 

The pressure distribution at the left container wall y = 0 is given for 
the rectangular pulse with a total duration of one-half, one and two seconds 
respectively, for  various locations along that wall. The fluid height in  this 
case is h3 = 16 feet. Fo r  the pulse duration of one-half second, the pressure 

P - + P@-0
distribution 

Pauo 
at the left wall y = 0 is given at the free fluid surface, 
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at half the depth of the liquid and at the container bottom (Shown in Figs. 37 
through 39). It can be seen that no dynamic pressure exists during the first 
few seconds that the wave is travelling from the right to the left container wall. 
At about nine seconds the pressure is indicated for the first time and continues 
to grow until it reaches ( in  a kind of sinusoidal fashion) a maximum of about 
0.0035 p a v

0 
at the free fluid surface, 0.0014 p a v

0 
+ p g 0.032a at half the 

liquid depth and 0.0013 p v a + p g 0.064a at the container bottom. 
0 


However, these peak pressures are reached at various times, as 
seen in Figures 32-40 for  various pulse durations. With the mass  density p = 0.973 
lbs sec2/ f t4  and the specific weight of y = p g = 62.4 lbs/  ft3, the total peak 
pressures at the left container wall for  a rectangular double pulse are 

(a) for  t = $ second by
0 


11.7lbs/fl? at x = O  
504.7 lbs/ ft2 at x = -ih3 

1004.7 lbs/  fl? at x = -h3 

(b) for  to = & second by 

21 lbs/ f t2  at x = O  
511.7 lbs/  ft2 at x = -h3l2 

1008.4 lbs/  ft2 at x = -h3 

(c)  for  t = I second by
0 


27 lbs/  ft2 at x = 0 
518.5 lbs/  ft? at x = -h3/ 

1017 lbs/ f t2  at x = -h3 

(at the free fluid surface) 
(at half the depth) 
(at the container bottom) 

(at the free fluid surface) 
(a t  half the depth) 
(a t  the container bottom) 

(at the free fluid surface) 
(at half the depth) 
(at the container bottom) . 

It can be seen, that the pressure at the bottom of the container (Fig. 
41) coincides with the pressure at the wall ( y  = 0 for  x = -h) I Fig. 39). In the 

- pgh 
center of the container at y * a/2, the pressure ( 'Bottom ) versus time 

avop 

is presented.in Figures 44, 45, and 48 for t 
0 

= I/ 4, I/ 2 and I second. The 

peak pressure at the container bottom at y = a/ 2 is, therefore, 
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1002.7 ibs/ fi? fo r  t = I/ 4 second 
0 

1005.2 lbs/ ft? for t = I/ 2 second 
0 

1009.6 lbs/ft? for t = I second. 
0 

The fluid force F is exhibited in the Figures 50 through 52 for 
Y 

t 
0 

= $, 9 and I second. F o r  t
0 

= 4second, the force pe r  foot of tank width in 

y-direction drops from a value of 113 pounds pe r  foot to 61 pounds pe r  foot. 
F o r  a tank width of 150 feet this yields a total force on the container in y-direc­
tion of 17000 pounds at t = 9 sec. , i. e. , exactly at the end of the pulse, and 
9100 pounds at about 48.5 seconds. F o r  a half-pulse duration t = 3 second,

0 


the force pe r  foot drops from 205 pounds p e r  feet at t = Isecond to 115 pounds 
pe r  feet at about 48.5 seconds. This corresponds to a total force 30,800 pounds 
and 17,200 pounds, respectively. Fo r  t = Isecond, i. e. , a pulse duration of 

0 


two seconds, the force pe r  foot yields 263 pounds pe r  foot at t = 2 seconds and 
drops to 182 pounds pe r  foot at about 49 seconds. This corresponds to a total 
force of 39,400 pounds and 27,300 pounds, respectively. 

The liquid moment is presented in Figures 53 through 55. F o r  
t = second, the maximum value of the moment pe r  foot of liquid is 6700 
0 

pounds, which corresponds to a total moment of I O 6  foot-pounds. Fo r  t = 3 
0 

second the maximum value is 14,300 pounds corresponding to a total moment 
about the center of gravity of the undisturbed liquid of 2,142, 000 foot-pounds. 
F o r  t = I second the maximum value of the moment per  unit width of the con­

0 


tainer is 26,300 pounds. This corresponds to a total moment of M = 3,950,000
2 

foot-pounds. 

SECTION V. RECOMMENDATIONS 

According to the theory presented and its numerical evaluation, it 
can be recommended that the walls of the container should be at least three 
feet higher than the liquid height to prevent any liquid loss during the operation 
of the system. The wall structure of the liquid reservoir should be designed 
according to the maximum pressures listed on page 35, 
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Since it was found that the liquid force and moments for pulses 
caused by one-wall-excitation a r e  considerably smaller than those of a har­
monic excitation of the complete container, further design specifications can 
be found only by treating the total system of liquid and structure. This has 
been done for various wind inputs and the result is presented in the report 
"Interaction of Structure and Liquid in the Sound Suppressor System. '' 

George C.  Marshall Space Flight Center, 
National Aeronautics and Space Administration 

Huntsville, Alabama, September 30, 1965. 
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TABLE I .  NATURAL CIRCULAR FREQUENCIES 

-
1 

y -Direction 

w 
n h,/ a1 h2/ al h3/ ai h,/ a2 

~1 0.2248 0.2558 0.2832 0.4293 

~2 0,4461 0.5051 0.5555 0.8354 

~3 0.6608 0.7422 0.8087 I.2024 

~4 0.8663 0.9634 1.0380 I.5243 

w 5  1.0609 1.1666 1.2425 1.8028 

Iw6 1.2435 1.3515 1.4236 2.0439 

Iw7 1.4136 1.5191 1.5842 2.2548 

W 8  1.5716 1.6710 1.7276 2.4421 

w 9  1.7180 1.8090 1.8569 2.6111 

w 10 1. 8538 1. 9353 1.9748 2.7660 

1.9797 2.0515 2.0835 2.9098 
~~ 

w12 2.0970 2.1592 2.1848 3.0450 

~ 1 32.2066 2.2598 2.2801 3.1730 

4~ 1 2.3094 2.3545 2.3704 3.2951 

5~ 1 2.4062 2.4441 2.4565 3.4123 

6~ 1 2.4979 2.5295 2.5390 3.5251 

7~ 1 2.5851 2.6113 2.6186 3.6342 

8~ 1 2.6683 2.6899 2.6955 3.7400 

w i g  2.7480 2.7657 2.7700 3.8427 

0~ 2 2.8247 2.8392 2.8424 3.9427 

1~ 2 2.8987 2.9105 2.9129 4.0402 

w Z 2  2.9073 2.9798 2.9817 4.1353 

3~ 2 3.0397 3.0474 3.0488 4.2283 

4~ 2 3.1072 3.1135 3.1145 4.31 92 

z-Direction 

h2/ a2 h3/ a? fluid height ratio 
0.4863 0.5319 

~ 

0.9305 I.0044 
~ 

I. 3104 I. 3837 

1.6358 1.6851 

I. 8880 9306 

2.1104 1389 
I 

2.3042 3223 

2.4774 4886 

2.6358 2.6425 

2.7829 2.7869 

2.9213 2.9236 

3.0526 3.0539 

3.1780 3.1788 

3.2984 3.2988 

3.4144 3.4147 

3.5265 3.5267 

3.6351 3.6352 

3.7406 3.7406 

3.8431 3.8431 

3.9429 3.9429 

4.0403 4.0403 

4.1354 4.1354 

4.2283 4.2283 

4.3193 4.31 93 
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TABLE I.. ( Concluded) 
- ~~ 

y-Direction 

. - h3/al - .  . hda2 h2/a2h2hi  . . __  
3.1780 3.1788 4 .4083- 4.4084 

3.2412 3.2418 4.4956 4.4957 

3.3031 3.3036 4.5813 4.5813 

3.3639 3.3642 4.6654 4.6654 

3.4235 3.4238 4.7479 4.7479 

Ius,-, 3.4855 3.4821 3.4823 4.8291 4. -a291 
. .  - .  . . . ~ .  

z -Direction 

h3/az fluid height ratio 

4.4957 I 
4.5813 

. .  

4.7479 
. .  . .  

4.8291 
1 

h i =  10 feet ai = 250 feet 
hz= 12 feet a2= 150 feet 
h3= 16 feet 
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FIGURE I .  SCHEMATIC O F  TANK SYSTEM, SATURN V SOUND SUPPRESSOR 
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FIGURE 11. PULSE EXCITATIONS 
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FIGURE 12. 	 SHAPE OF FREE FLUID SURFACE FOR HARMONIC EXCITATION 
OF RJGHT SIDE WALL 

51 



FIGURE 13. 	 LIQUID SURFACE ELEVATION FOR RECTANGULAR DOUBLE 
PULSE OF ONE SECOND DURATION FOR VARIOUS TIMES 
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FIGURE 15. 	 LIQUID SURFACE ELEVATION FOR RECTANGULAR DOUBLE 
PULSE OF ONE SECOND DURATION FOR VARIOUS TIMES 
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FIGURE 22. 	 LIQUID SURFACE ELEVATION FOR RECTANGULAR DOUBLE 
PULSE OF ONE SECOND DURATION FOR VARIOUS TIMES 

61 




iit w 1
d iIi w

I I7 w n 
LLLLl !I

d
1wt i$ I I I I I II 
1
1


TT m
IT r[T

TT lr m i

I 4
rr lr m i 1

7 1 1

T i 1 1
1 81 1 1
II n w 1

TI l7 I 1  UlMl I I 1

I 

1T "in i 1
n T m1 1


!I!" Ill f UlIIlll 1 I f 1r T m I 1
T 
I
I T m 

I
1.1

I
I
I I

I 
I
I LI

I 
1
II 

r T
I
I 

I I I I I I I 

II
I II 

I 	 I I I I I
I I I I I  I I
I I I I I  Ir r I I I H  

II
I 

1 1 1 1 1
1 1 1 1 1  LI

I
I 

L 

L 

II
I 

rI
I
1 

r j l ! ! I  ! ! 

FIGURE 23. LIQUID SURFACE ELEVATION FOR RECTANGULAR DOUBLE 
PULSE OF ONE SECOND DURATION FOR VARIOUS TIMES 

6 2  




LLU
1111

LlLLu
u

L L L  

RH
mmmmrrrmn I I I I I
II I l l  um
I I I I I  I
II I I  I I 

I I I I  I I
Ill I I
I l l  I i
I l l  I I
IIf I I
I1 I I
I I I I
I I I I 

L FIGURE 24. LIQUID SURFACE ELEVATION FOR RECTANGULAR DOUBLE 
PULSE OF ONE SECOND DURATION FOR VARIOUS TIMES 



i
I
1

1

1
I 

t 
1
I

1

I

I


I 
 I

i 


1 
i I 


I 
I
I 

I 
I 
I 


f

I 
1
+

1 

t -
I

f
i

I
I

k

1

L-
. 4  Y/ a 

I Q 


1 

1 

! I  

FIGURE 25. LIQUID SURFACE ELEVATION FOR SINUSOIDAL PULSE OF 
ONE SECOND DURATION FOR VARIOUS TIMES 

64 




FIGURE 26. 	 LIQUID SURFACE ELEVATION FOR SINUSOIDAL PULSE OF 

ONE SECOND DURATION FOR VARIOUS TIMES 
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FIGURE 27. LIQUID SURFACE ELEVATION FOR SINUSOIDAL PULSE O F  

ONE SECOND DURATION FOR VARIOUS TIMES 
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FIGURE 30. LIQUID SURFACE ELEVATION FOR SINUSOIDAL PULSE OF 
ONE SECOND D-TION FOR VARIOUS TIMES 
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FIGURE 32. 	 PRESSURE DISTRIBUTION AT THE LEFT CONTAINER WALL FOR 
RECTANGULAR DOUBLE PULSE FOR VARIOUS PULSE DURATIONS 
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FIGURE 43. PRESSURE DISTRIBUTION AT THE CONTAINER BOTTOM FOR 
RECTANGULAR DOUBLE PULSE 
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FIGURE 53. 	 LIQUID MOMENT FOR RECTANGULAR DOUBLE PULSE FOR 
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FIGURE 55. 	 LIQUID MOMENT FOR RECTANGULAR DOUBLE PULSE FOR 
VARIOUS PULSE DURATIONS 

94 




FIGURE 56. PATH OF INTEGMTION FOR INIPR0PE.R INTEGRALS 






APPENDIX 

EVALUATION OF IMPROPER INTEGFtALS 

The integrals in the text are improper integrals and require the 
evaluation of 

$,f (Sl) eiandSl 
C witha>O. 

The path C of integration is the real axis and the semicircle around the origin 
in the upper half plane (Fig. 56). 

Evaluation is restricted to two of these integrals. The others are very similar 
and do not require additional techniques. 

The integral 

to 03 W cos Sl t  sin Sl t  d S l + i l  s in  SlSl (T-t) dSl
Sl Sl 

0
s 

0 0 


because sin SlT cos Sl t = i/ 2 s h  Sl ( t  + T) + i/ 2 sin Sl ( T  - t) . Essentially, 
it is necessary to determine the value of the integral 

W 

J 
sin 

Sl 
a Q 

dQ 
0 


since a can be taken to be either T+t or  T-t. It is 

to 1 +a e iaSl i +W e -iaSl 
d S l = y  d S l - z S  7dSl .41 

0 --oo W 
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The integral 

m 00 

8 cos 8 t s i n 8  T 8 sin 8 (T-t) d 8d - 8J 
0 0 0 


yields essentially integrals of the form 

+m 
ia8 

" d 8 .  
-Go 
s w2-822 

These integrals exhibit singularities on the integration path but their 
principal value can be found by complex evaluation methods. The integration 
path is taken along the real axis and a semicircle in the complex C2 -plane. If 
it can be shown that the integral along the semicircle vanishes with increasing 
radius of the circle, the value of the integral along the closed path is the same 
as that of the integral along the real axis from - 03 to +m . If the integral 

i8ayf (8)e d 8  
Ci 

is considered with a > 0 and Cia semicircle around the origin in the upper half 
plane, then f ( 8 ) may satisfy the following conditions : 

i. f (  a)be analytic for Im(8 ) > 0 except for a finite number of poles. 

2. 	 The absolute value of the function f (S2 ) on the curve approaches zero 
as the radius of the circle Ci approaches infinity. 

l im [f(a)I= o for 0 9 a r g  8sF. 
1a2'1-

Then 

lim gf(8) e i8ad 8  = 0, if a > 0. 

1821 - O 0  c1 
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Proof: With the second condition, it can be concluded with sufficiently large 
ti21 , that If (a) l  < E: for all S l  on C1 and E > 0. 

W i t h Q = R e i q  itis 

leiaa  I = l eia R(cos cp + i s in  c p )  I =  e -aR sin q s e  -2a Rq/lr  

because of 

2/T 5 5 i 
40 

Therefore, it is 

ia R cosq 
.e - 4 R  sin q . R a  eicpdqi 

0 

lr 


< � R  [ e  
-a R sinq 

d q = 2  ER [lr/2 
e 
- a R sincp 

dcp 
0 0 

The limit value for R - 03 ( E - 0) yields 

l im  = 0. 
R - c m  

For the type of integrals appearing in the text the function f ( a  9 is a 
rational function, consisting of two polynomials h (  Q ) and g( 9 . It is 
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with at least the order of g( S2 ) being larger  by one than that of h( S2 ) , i. e. , 

Theref ore, 

l im If(S2)l = 0.

PI-

If the function f ( $2 ) e i$2a satisfies the following conditions : 

I. 	 f ( S2 ) eiaQ is analytic in the upper half plane for ImQ 2 0 except for 
a finite number of poles. 

2. f($2) eiQa has only simple poles on the real axis. 

then 

+co n m 
f ( Q )  eia' dQ = 27ri Res. ( a A ) +i7r Res. (bh )  

-co A =I A =I 

where the a
h

's are n poles in the upper half plane ImQ > 0 and the bA's are m 

simple poles on the real axis for the function f ( 3 )  e
iQa. 

Proof: The first part  of this statement follows from Cauchy's Theorem and the 
fact that the integral along the semicircle vanishes. Let us proof the second 
part  of the formula. At $2 = f w are simple poles on the real axis. A semi­
circle of radius p is taken around $2 = fw in the upper half plane. The contour 
C consists of the real axis from -R to +R (excluding the segments 
-+w - p  to 4L, + p )  , the semicircles p and the semicircle C1 in the upper half 
plane having the radius R and the center at the origin. With Cauchy's Theorem, 
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F 


$f(Q) eiaQ dQ = Clf;f(Q) eiaQ dQ + f ( Q )  eiaQ dQ + I 
n

C Cl ( P I )  

n 
= 2 7 r i  Res (a,) 

A =I 

where aA are the poles inside the integration path C. 

The integral I is n 

-a -PI w -P2 R 
I = s f(S2) cia' dS2 + f ( Q )  cia' dS2 + f ( Q )  eiaS2 dS2 
n 

-R -w -PI w +P2 

Where P denotes the prinicpal value, 

+oo 


1 i m I  = P s f(S2) cia' dQn 
-oo 


In considering the integral 

where, on the semicircle, Q can be written as 
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Since f (Q)  eiaQ has at Q = w a simple pole, the Laurent expansion of the func­
tion can be written as 

The residue at Q = w is bz. Therefore, 

which yields with p2 - 0 

The same is valid for other simple poles on the real axis and proves the above 
statement. 

The preceeding integrals satisfy the cited conditions, exhibit only 
simple singularities on the real axis and a r e  

+ca 


s. iaQ 

Q 
d Q =  n i  

-ca 


and 

+ca 

.iaQ iaw -iaw.f y 

w Q 
d Q = n i  -

2w 
= - n i c o s a o ;  ( a > 0 ) .  

-.o 

:;<
For a C 0 the integration path C has to be taken in  the lower half plane 
(n 5 a rg  Q 5 2n ) . Integration in clockwise direction then yields a negative 
sign in Cauchy's expression. 

io2  



Now the first integral 

s 
a, cos 52 t sin 52 T l 1

+a, ei ( t+T)52  l +a, e -i( t+T) 52 

0 d52 d W = z  
a, 

52 d S 2 - S i  -03 52 
d52 

I
+si
I j-ei(T-t) 52 d52 -si ?a, e-ir-t)52 

d52
52 

--oo -a, 

which yields for t < T 

a, 


f cos 52 t sin 52 T 
d Q = ,r . 


For t = T the third and fourth integral vanish together and the value of the inte­
gral is r/  4. For  t > T the integrals cancel each other. It is, therefore, 

7r- for t < T 

0 03 52 d52 = t = T ]  

t > T  . 
The second integral to be evaluated yields 

a, 
52 cos 52 t s in  52 T I 

+m 
52e

i( t+T) 52 
d52 

0 -03 

+a, 52e-i(t+T) 52 52e a 
-a, -a, 


+Go 
52e

-i (T-t) !2 

-siI s w 2 - 522 d52 . 
-03 
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- - - - 

- - 

This is for  t < T 

m 
IT
R cos R t s i n R T  d o  = - - C O S  W (  t+T). I T COS w (t+T) IT COS w (t-T) 

0 8 8 8 

IT IT- -
8 

COS (t-T) = 
2 

COS w t COS w T. 

For t = T the third and fourth integral vanish together and the value of the inte­
gral  is - IT/4 cos 2 ot, while for t > T the exponential function exhibits in the 
third and fourth integral a negative value for (T-t) in the exponent, which results 
in a change of the integral path from the upper to the lower half plane and vise 
versa for the fourth integral. It is, therefore, 

IT IT ITR cos R t s in  $2 T dR = - - COS w(t+T) - s COS w ( t+T) + 5 COS w (t-T) 
0 8 

+ - c o s w ( t - T ) = - s i n o t s i n w T  f o r t > T7r IT 
8 2 

It is, therefore, 
L 

for t > TJ 

c-oswt cos w T for  t < T 

m 

0J 
S2 cos R t s in  R T dR = 

W 2 - R 2  

for  t > T  

The other integral expression can be evaluated in a very similar way (see  also 
Ref. 6 ) .  
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